已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.
设函数 (1)求函数的最小值; (2)若恒成立,求实数的取值范围.
已知数列满足,其中. (1)设,求证:数列是等差数列,并求出的通项公式; (2)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
已知向量,=,函数. (1)求函数f(x)的解析式及其单调递增区间; (2)当x∈时,求函数f(x)的值域.
在直角坐标系中,直线经过点,其倾斜角为,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为. (1)若直线与曲线C有公共点,求的取值范围: (2)设为曲线C上任意一点,求的取值范围.
已知函数其中e是自然数的底数,. (1)当时,解不等式; (2)若上是单调增函数,求的取值范围; (3)当,求使方程上有解的所有整数k的值.