(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为、、、,且各轮问题能否正确回答互不影响。(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;
已知圆:,直线.(1)若直线与圆交于不同的两点,,当=时,求的值.(2)若,是直线上的动点,过作圆的两条切线、,切点为、,问:直线是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.(3)若、为圆:的两条相互垂直的弦,垂足为,求四边形的面积的最大值.
某工厂年初用49万元购买一台新设备,第一年设备维修及原料消耗的总费用6万元,以后每年都增加2万元,新设备每年可给工厂创造收益25万元.(1)工厂第几年开始获利?(2)若干年后,该工厂有两种处理该设备的方案:①年平均收益最大时,以14万元出售该设备;②总收益最大时,以9万元出售该设备.问出售该设备后,哪种方案年平均收益较大?
已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求(1)顶点的坐标;(2)直线的方程.
如图,在四棱锥中,四边形是矩形,侧面⊥底面,若点分别是的中点.(1)求证:∥平面;(2)求证:平面⊥平面.
在中,角的对边分别是,且.(1)求角的大小;(2)若,求面积的最大值.