本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.设数列是一个首项为、公差为的无穷等差数列.(1)若,,成等比数列,求其公比.(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
如图,在平面直角坐标系xOy中,M、N分别是椭圆=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB..
已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.(1)若点B的坐标为(0,2),求曲线E的方程;(2)若a=b=1,求直线AB的方程.
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:以PQ为直径的圆恒过y轴上某定点.
已知抛物线D的顶点是椭圆C:=1的中心,焦点与该椭圆的右焦点重合.(1)求抛物线D的方程;(2)过椭圆C右顶点A的直线l交抛物线D于M、N两点.①若直线l的斜率为1,求MN的长;②是否存在垂直于x轴的直线m被以MA为直径的圆E所截得的弦长为定值?如果存在,求出m的方程;如果不存在,说明理由.