用数学归纳法证明等式:n,n
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位已知直线 的参数方程为 (t为参数,),曲线C的极坐标方程为 (Ⅰ)求曲线C的直角坐标方程。 (Ⅱ)设直线 与曲线C相交于A,B两点,当变化时,求 的最小值
已知函数及上一点,过点作直线. (Ⅰ)求使直线和相切,且以为切点的直线方程; (Ⅱ)求使直线和相切,且切点异于的直线方程.
已知的解为条件,关于的不等式的解为条件. (Ⅰ)若是的充分不必要条件时,求实数的取值范围. (Ⅱ)若是的充分不必要条件时,求实数的取值范围.
设函数. (1)当时,求函数的定义域; (2)若函数的定义域为,试求的取值范围.
已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是:求直线与曲线相交所成的弦的弦长.