(本大题满分12分) 某班级共有60名学生.先用抽签法从中抽取部分学生调查他们的学习情况,若每名学生被抽到的概率为。 (I)求从中抽取的学生数, (Ⅱ)若抽查结果如下表
先确定x,再完成频率分布直方图;
(III)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表)
知函数是定义在上的奇函数,且当时,+1. (1)计算,; (2)当时,求的解析式.
已知函数的定义域为集合,. (1)若,求的取值范围; (2)若全集,,求及.
已知数列的前n项和为,且满足,, (1)设,数列为等比数列,求实数的值; (2)设,求数列的通项公式; (3)令,求数列的前n项和.
已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B, (1)求证:; (2)求证:A、F、B三点共线; (3)求的值.
已知函数为奇函数,为常数, (1)求实数的值; (2)证明:函数在区间上单调递增; (3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.