如图,在棱长为1的正方体 A B C D - A ` B ` C ` D ` 中, A P = B Q = b 0 < b < 1 ,截面 P Q E F ∥ A ` D .
(Ⅰ)证明:平面 P Q E F 和平面 P Q G H 互相垂直; (Ⅱ)证明:截面 P Q E F 和截面 P Q G H 面积之和是定值, 并求出这个值; (Ⅲ)若 b = 1 2 ,求 D ` E 与平面 P Q E F 所成角的正弦值.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
(本小题满分10分)己知圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
(本小题满分12分)已知数列中,. (1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.
(本小题满分12分)设函数.(Ⅰ)当时,求的值域;(Ⅱ)已知中,角的对边分别为,若,,求面积的最大值.
已知函数(Ⅰ)讨论函数的单调性;(II)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;(Ⅲ)求证: