如图,在棱长为1的正方体 A B C D - A ` B ` C ` D ` 中, A P = B Q = b 0 < b < 1 ,截面 P Q E F ∥ A ` D .
(Ⅰ)证明:平面 P Q E F 和平面 P Q G H 互相垂直; (Ⅱ)证明:截面 P Q E F 和截面 P Q G H 面积之和是定值, 并求出这个值; (Ⅲ)若 b = 1 2 ,求 D ` E 与平面 P Q E F 所成角的正弦值.
已知圆C的半径为1,圆心C在直线l1:上,且其横坐标为整数,又圆C截直线所得的弦长为• (I )求圆C的标准方程; (II)设动点P在直线上,过点P作圆的两条切线PA, PB,切点分别为A ,B求四边形PACB面积的最小值.
为备战2012年伦敦奥运会,爾家篮球队分轮次迸行分项冬训.训练分为甲、乙两组,根据经验,在冬训期间甲、乙两组完成各项训练任务的概率分别为和P(P>0)假设每轮训练中两组都各有两项训练任务需完成,并且每项任务的完成与否互不影响.若在一轮冬训中,两组完成训练任务的项数相等且都不小于一项,则称甲、乙两组为“友好组” (I)若求甲、乙两组在完成一轮冬训中成为“友好组”的概率; (II)设在6轮冬训中,甲、乙两组成为“友好组”的次数为,当时,求P的取值范围.
已知向量函数且最小正周期为. (I)求函数的最大值,并写出相应的X的取值集合; (II)在中,角A,B, C所对的边分别为a, b,c,且,c=3,,求b的值.
选修4-5:不等式选讲 已知,. (1)求证:,; (2)若,求证:.
选修4-4:坐标系与参数方程 已知直线的参数方程是,圆C的极坐标方程为. (1)求圆心C的直角坐标; (2)由直线上的点向圆C引切线,求切线长的最小值.