(本小题满分12分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD;
(3)若,求实数的值,使得直线SM与平面SCD所成角为
(本小题满分16分)已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有(1)求a3,a5;(2)设(n∈N*),证明:数列{bn}是等差数列;(3)设cn=qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn.
(本小题满分16分)已知函数(1)当时,求函数在的值域(2)求函数的单调区间(3)若函数在区间上不单调,求实数的取值范围
(本小题满分16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该单位不亏损?
(本小题满分14分)已知函数.(1)求的单调递增区间; (2)求在区间上的最值及相应的x值.(3)将函数的图象向左平移个单位后,所得的函数恰好是偶函数,求的最小值。
(本小题满分14分)已知集合A为不等式的解集,B=,(1)求解集合A; (2)若AB,求的取值范围;(3)若,求的取值范围