(本小题满分12分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD;
(3)若,求实数的值,使得直线SM与平面SCD所成角为
设,若. (1)求A; (2)求实数的取值范围.
(13分) 已知集合,集合. (1)求; (2)求CR.
(本小题满分12分) 已知函数(R). (1)若,求函数的极值; (2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。
(本小题满分12分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,. (1)设是的中点,证明:平面; (2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。
(本小题满分12分) 已知正项等差数列的前项和为,若,且成等比数列. (1)求的通项公式; (2)记的前项和为,求证.