(本小题满分12分)已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).(1)求椭圆C的方程;(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.
已知数列各项均为正数,满足. (1)计算,并求数列的通项公式; (2)求数列的前项和.
某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
(1)在抽取的20个产品中,等级为5的恰有2个,求,; (2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.
已知函数的最大值为2. (1)求的值及的最小正周期; (2)在坐标纸上做出在上的图像.
设, (1)若的图像关于对称,且,求的解析式; (2)对于(1)中的,讨论与的图像的交点个数.
已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上. (1)求椭圆的标准方程; (2)若斜率为的直线交椭圆与、两点,且、、成等差数列,点M(1,1),求的最大值.