(本小题满分12分)已知点和直线,作垂足为Q,且(Ⅰ)求点P的轨迹方程;(Ⅱ)过点C的直线与点P轨迹交于两点,,点,若的面积为,求直线的方程.
已知α为锐角且,(1)求tanα的值;(2)求的值.
已知(1)证明:⊥;(2)若存在实数k和t,满足且⊥,试求出k关于t的关系式k=f(t).(3)根据(2)的结论,试求出k=f(t)在(-2,2)上的最小值.
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围
如图,已知三棱锥P-ABC中,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB中点,且△PDB是正三角形,PA⊥PC。.(1)求证:DM∥平面PAC;(2)求证:平面PAC⊥平面ABC;(3)求三棱锥M-BCD的体积
如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点。(1)求证:BD⊥AE;(2)求点A到平面BDE的距离.