如图中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点. (I)求椭圆的标准方程;(II)若过点B(2,0)的直线L(斜率不等于零)与椭圆交于不同的两点E、F(E在B、F之间),试求OBE与OBF面积1:2,求直线L的方程。
设函数f (x)=2cosx (cosx+sinx)-1,x∈R(1)求f (x)的最小正周期T;(2)求f (x)的单调递增区间.
如图,为了解某海域海底构造,在海平面内一条直线上的 A , B , C 三点进行测量,已知 A B = 50 m , B C = 120 m ,于 A 处测得水深 A D = 80 m ,于 B 处测得水深 B E = 200 m ,于 C 处测得水深 C F = 110 m ,求 ∠ D E F 的余弦值.
一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,求这个平面图形的面积。
已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分的比分λ1、λ2.求证:λ1+λ2=0
(本小题满分12分) 如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2. (1)求证:B1B//平面D1AC; (2)求二面角B1—AD1—C的余弦值.