因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4. (1)求两年后柑桔产量恰好达到灾前产量的概率; (2)求两年后柑桔产量超过灾前产量的概率.
(本小题满分12分) 已知函数.. (I)求证: (II)是否存在常数a使得当时,恒成立?若存在,求a的取值范围,若不存在,说明理由.
(本小题满分12分) 椭圆E:与直线相交于A、B两点,且OA丄OB(O为坐标原点). (I)求椭圆E与圆的交点坐标: (II)当时,求椭圆E的方程.
(本小题满分12分) 已知. (I )求数列丨的通项: (II)若对任意,〜恒成立,求c的取值范围.
(本小题满分12分) 如图,直三棱柱中,AC=BC=1, AAi="3" D为CCi上的点,二面角A-A1B-D的余弦值为 (I )求证:CD=2; (II)求点A到平面A1BD的距离.
(本小题满分12分) 一项试验有两套方案,每套方案试验成功的概率都是,试验不成功的概率都是甲随机地从两套方案中选取一套进行这项试验,共试验了 3次,每次实验相互独立,且要从两套方案中等可能地选择一套. (I)求3次试验都选择了同一套方案且都试验成功的概率:(II)记3次试验中,都选择了第一套方案并试难成功的次数为X,求X的分布列和期望EX.