已知椭圆的中心在原点,一个焦点是 F ( 2 , 0 ) ,且两条准线间的距离为 λ ( λ > 4 ) . (I)求椭圆的方程; (II)若存在过点 A ( 1 , 0 ) 的直线 l ,使点 F 关于直线 l 的对称点在椭圆上,求 λ 的取值范围.
已知关于的不等式.(Ⅰ)当时,求此不等式的解集;(Ⅱ)若此不等式的解集为,求实数的取值范围.
已知函数,.(1)设函数,求函数的单调区间; (2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由.
已知椭圆:的右焦点,过原点和轴不重合的直线与椭圆 相交于,两点,且,最小值为.(Ⅰ)求椭圆的方程;(Ⅱ)若圆:的切线与椭圆相交于,两点,当,两点横坐标不相等时,问:与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
如图:四棱锥中,,,.∥,..(Ⅰ)证明: 平面;(Ⅱ)在线段上是否存在一点,使直线与平面成角正弦值等于,若存在,指出点位置,若不存在,请说明理由.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有的把握认为患心肺疾病与性别有关?说明你的理由;(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列,数学期望以及方差.下面的临界值表供参考:
(参考公式 其中)