北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,在同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在一个水平面上。若国歌长度约为50秒,问:升旗手应以多大的速度(米/秒)匀速升旗?
设函数,其中.(1)当时,求不等式的解集;(2)若不等式的解集为 ,求a的值.
已知函数(1)若在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=-是的极值点,求在[1,a]上的最大值;(3)在(2)的条件下,是否存在实数b,使得函数=bx的图象与函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意的n∈N*,有2Sn=2an2+an-1.(1)求数列{an}的通项公式;(2)记,求数列{bn}的前n项和Tn.
已知函数.(1)求函数的定义域;(2)若不等式有解,求实数的取值范围.
已知,, 且.(1)求函数的周期;(2)当时, 的最小值是-4 , 求此时函数的最大值, 及相应的的值.