(本题满分14分,第(1)小题6分,第(2)小题8分)四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60,在四边形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.(1)求四棱锥P-ABCD的体积;(2)求异面直线PA与BC所成的角.
(本小题满分12分)如图,在多面体ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。(I)求证:EF//平面ABC;(II)求证:平面BCD;(III)求多面体ABDEC的体积。
(本小题满分12分)已知(I)求的最大值,及当取最大值时x的取值集合。(II)在三角形ABC中a、b、c分别是角A、B、C所对的边,对定义域内任意,且b=1,c=2,求a的值。
(本小题满分12分)某汽车厂生产A、B两类轿车,每类轿车均有舒适型和标准型两种,某月的产量如下表:按分层抽样的方法在该月生产的轿车中抽取50辆,其中A类轿车20辆。(I)求x的值;(II)用分层抽样的方法在B类轿车中抽取一个容量为6的样本,从样本中任意取2辆,求至少有一辆舒适轿车的概率。
(本小题满分12分)已知函数=在处取得极值.(1)求实数的值;(2) 若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3) 证明:.参考数据:
(本小题满分12分)已知离心率为的椭圆上的点到左焦点的最长距离为(1)求椭圆的方程;(2)如图,过椭圆的左焦点任作一条与两坐标轴都不垂直的弦,若点在轴上,且使得为的一条内角平分线,则称点为该椭圆的“左特征点”,求椭圆的“左特征点”的坐标.