(本小题共10分)已知锐角的三内角A、B、C的对边分别是(1)求角A的大小;(2)求的值.
已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-.(1)求动点P的轨迹M的方程;(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.
(13分)已知圆O:x2+y2=3的半径等于椭圆E:=1(a>b>0)的短半轴长,椭圆E的右焦点F在圆O内,且到直线l:y=x-的距离为-,点M是直线l与圆O的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).(1)求椭圆E的方程;(2)求证:|AF|-|BF|=|BM|-|AM|.
已知函数f(x)=ln(x+1)-x2-x.(1)若关于x的方程f(x)=-x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(2)证明:对任意的正整数n,不等式2+++…+ >ln(n+1)都成立.
设函数f(x)=ln x+x2-(a+1)x(a>0,a为常数).(1)讨论f(x)的单调性;(2)若a=1,证明:当x>1时,f(x)< x2--.
(13分)某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?