设函数 (1)当时,求函数在上的最大值;(2)记函数,若函数有零点,求的取值范围.
(Ⅰ)若成绩大于或等于秒且小于秒认为良好,求该班在这次百米测试中成绩良好的人数;(Ⅱ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率。
(Ⅰ)求的值;(Ⅱ)若的面积,求的值
(Ⅰ)当时,判断函数在定义域上的单调性。(Ⅱ)若函数有极值点,求b的取值范围及的极值点。
(Ⅰ)设椭圆上的点到两点、距离之和等于,写出椭圆的方程和焦点坐标;(Ⅱ)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;(Ⅲ)设点是椭圆上的任意一点,过原点的直线与椭圆相交于,两点,当直线 , 的斜率都存在,并记为, ,试探究的值是否与点及直线有关,不必证明你的结论。
(Ⅰ)求证:平面; (Ⅱ)设的中点为,求证:平面; (Ⅲ)求四棱锥的体积.