设函数 (1)当时,求函数在上的最大值;(2)记函数,若函数有零点,求的取值范围.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程
求函数f(x)=-2的极值。
已知椭圆C的焦点F1(-,0)和F2(,0),长轴长6,设直线交椭圆C于AB两点,求线段AB的中点坐标
已知函数=(e为自然对数的底数) (Ⅰ)求函数单调递增区间; (Ⅱ)若,求函数在区间[0,]上的最大值和最小值. (III)若函数的图象有三个不同的交点,求实数k的取值范围. (参考数据)
已知动点P与双曲线的两个焦点F1,F2的距离之和为定值, 且cos∠F1PF2的最小值为-. (1)求动点P的轨迹方程; (2)是否存在直线l与P点轨迹交于不同的两点M、N,且线段MN恰被直线平分?若存在,求出直线l的斜率k的取值范围,若不存在说明理由.