(本小题满分13分)在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.
(本小题满分15分)已知数列中,. (Ⅰ)求证:数列()均为等比数列; (Ⅱ)求数列的前项和; (Ⅲ)若数列的前项和为,不等式对恒成立,求的最大值.
(本小题满分14分)如下图,某小区准备绿化一块直径为的半圆形空地,的内接正方形为一水池,外的地方种草,其余地方种花.若 ,设的面积为,正方形的面积为,将比值称为“规划合理度”. (Ⅰ) 试用,表示和; (Ⅱ) 若为定值,当为何值时,“规划合理度”最小?并求出这个最小值.
(本小题满分14分)设甲、乙两套试验方案在一次试验中成功的概率均为p,且这两套试验方案中至少有一套试验成功的概率为0.51,假设这两套试验方案在试验过程中,相互之间没有影响.,设试验成功的方案的个数为.(Ⅰ)求p的值;(Ⅱ)求的数学期望E与方差D.
(本小题满分14分)设数列的前项和为,且,为等差数列,且,.(Ⅰ)求数列和通项公式;(Ⅱ)设,求数列的前项和.
(本小题满分12分)盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率. (Ⅰ)取到的2只都是次品;(Ⅱ)取到的2只中恰有一只次品.