(本小题满分13分)在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点. (1)求证://平面; (2)求与平面BDE所成角的余弦值; (3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。
已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为 (1)求曲线C的方程。 (2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。
已知命题:方程表示焦点在轴上的双曲线。命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
已知函数f(x)=-x3+x2-2x(a∈R). (1)当a=3时,求函数f(x)的单调区间; (2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围; (3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
如图,E是以AB为直径的半圆上异于点A、B的点,矩形ABCD所在的平面垂直于该半圆所在的平面,且AB=2AD=2 (1)求证: (2)设平面与半圆弧的另一个交点为 ①试证: ②若求三棱锥的体积