如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点,(1)求证:;(2)当E是棱CC1中点时,求证:CF//平面AEB1;(3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。
已知函数. (1)当时,求的单调区间; (2)若函数在单调递减,求实数的取值范围.
已知分别为三个内角的对边, (1)求;(2)若,求的面积.
已知函数() (1)若曲线在点处的切线平行于轴,求的值; (2)当时,若直线与曲线在上有公共点,求的取值范围.
已知函数,且当时,的最小值为2. (1)求的值,并求的单调增区间; (2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.
已知函数满足对任意实数都有成立,且当时,,. (1)求的值; (2)判断在上的单调性,并证明; (3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。试证明:在处连续.