已知函数.(1)试判断在上的单调性;(2)当时,求证:函数的值域的长度大于(闭区间[m,n]的长度定义为n-m).
(本小题满分15分)已知函数在上为增函数,且,为常数,.(Ⅰ)求的值;(Ⅱ)若在上为单调函数,求m的取值范围;(Ⅲ)设,若在上至少存在一个,使得成立,求的m取值范围.
(本小题满分14分)椭圆过点P,且离心率为,F为椭圆的右焦点,、两点在椭圆上,且 ,定点(-4,0).(Ⅰ)求椭圆C的方程; (Ⅱ)当时 ,问:MN与AF是否垂直;并证明你的结论.(Ⅲ)当、两点在上运动,且 =6时, 求直线MN的方程.
已知函数,,(Ⅰ)当时,若在上单调递增,求的取值范围;(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值;(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
已知:函数的最大值为,最小正周期为.(Ⅰ)求:的解析式;(Ⅱ)若的三条边为,,,满足,边所对的角为.求:角的取值范围及函数的值域.
已知集合,(Ⅰ)当时,求;(Ⅱ)求使的实数的取值范围。