(I)设 a 1 , a 2 , … a n 是各项均不为零的等差数列 n ≥ 4 ,且公差 d ≠ 0 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①当 n = 4 时,求 a 1 d 的数值;②求 n 的所有可能值; (II)求证:对于一个给定的正整数 n ≥ 4 ,存在一个各项及公差都不为零的等差数列 b 1 , b 2 … … b n ,其中任意三项(按原来的顺序)都不能组成等比数列。
某普通高中共有教师人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是、.(Ⅰ)求的值;(Ⅱ)为了调查研修效果,现从三个批次中按 的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?(Ⅲ)若从(Ⅱ)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
已知函数图像上点处的切线与直线平行(其中), (I)求函数的解析式;(II)求函数上的最小值;(III)对一切恒成立,求实数的取值范围。
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.(1)求椭圆的方程;(2)设椭圆与直线相交于不同的两点M、N.当时,求m的取值范围.
已知函数在及处取得极值.(1)求、的值;(2)求的单调区间.
现有一枚质地均匀的骰子,连续投掷两次,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是7的结果有多少种?(3)向上的点数之和是7的概率是多少?