(I)设 a 1 , a 2 , … a n 是各项均不为零的等差数列 n ≥ 4 ,且公差 d ≠ 0 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①当 n = 4 时,求 a 1 d 的数值;②求 n 的所有可能值; (II)求证:对于一个给定的正整数 n ≥ 4 ,存在一个各项及公差都不为零的等差数列 b 1 , b 2 … … b n ,其中任意三项(按原来的顺序)都不能组成等比数列。
已知复数,当实数m取何值时,复数是: (1)零;(2)纯虚数;(3)
已知函数f(x)=x2-alnx(a∈R). (1)若a=2,求f(x)的单调区间和极值; (2)求f(x)在[1,e]上的最小值.
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间 (-上是减函数,又. (1)求f(x)的解析式; (2)若方程有三个不等实根,求m的取值范围.
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上 截去四个相同的小正方形,制成一个无盖的小盒子. (1)将小盒子的容积V写成关于小正方形的边长的函数; (2)正方形的边长为多少时,盒子容积最大?求出最大值.
命题:方程有两个不等的正实数根,命题:函数在R上是减函数.若“或”为真命题,“且” 为假命题,求的取值范围.