A 、 B 两个投资项目的利润率分别为随机变量 X 1 和 X 2 .根据市场分析, X 1 , X 2 的分布列分别为
(Ⅰ)在 A 、 B 两个项目上各投资 100 万元, Y 1 和 Y 2 分别表示投资项目 A 和 B 所获得的利润,求方差 D Y 1 , D Y 2 ; (Ⅱ)将 x 0 ≤ x ≤ 10 万元投资A项目, 100 - x 万元投资 B 项目, f x 表示投资 A 项目所得利润的方差与投资 B 项目所得到利润的方差的和。求 f x 的最小值,并指出 x 为何值时, f x 取到最小值。 (注: D A x + b = a 2 D x )
某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:
(1)将各组的频率填入表中;(2)根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率
如图所示的几何体中,已知平面平面,,且,,,求证:
甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率是. 求:(1)乙投球的命中率;(2)甲投球2次,至少命中1次的概率;(3)若甲、乙二人各投球2次,求两人共命中2次的概率
10分)如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:
一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是,从中任意摸出2个球,至少得到1 个白球的概率是. 求:(1)从中任意摸出2个球,得到的都是黑球的概率;(2)袋中白球的个数