将数列 { a n } 中的所有项按每一行比上一行多一项的规则排成下表: a 1
a 2 a 3
a 4 a 5 a 6
a 7 a 8 a 9 a 10
…… 记表中的第一列数 a 1 , a 2 , a 4 , a 7 ……构成的数列为 { b n } , b 1 = a 1 = 1 , S n 为数列 { b n } 的前 n 项和,且满足 2 b n b n S n - S n 2 = 1 ( n ≥ 2 )
(I)证明数列 { 1 S n } 成等差数列,并求数列 { b n } 的通项公式; (II)上表中,若从第三行起,每一行中的数从左到右的顺序均构成等比数列,且公比为同一个正数,当 a 31 = - 4 91 时,求上表中第 k ( k ≥ 3 ) 行所有项的和
(设函数在上满足,,且在闭区间上只有.(1)求证函数是周期函数;(2)求函数在闭区间上的所有零点;(3)求函数在闭区间上的零点个数及所有零点的和.
10分)某太阳能热水器厂2007年的年生产量为670台,该年比上一年的年产量的增长率为34%. 从2008年开始,以后的四年中,年生产量的增长率逐年递增2%(如,2008年的年生产量的增长率为36%).(1)求2008年该厂太阳能热水器的年生产量(结果精确到0.1台);(2)求2011年该厂太阳能热水器的年生产量(结果精确到0.1台);(3)如果2011年的太阳能热水器的实际安装量为1420台,假设以后若干年内太阳能热水器的年生产量的增长率保持在42%,到2015年,要使年安装量不少于年生产量的95%,这四年中太阳能热水器的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?(参考数据:,,1.5634="5.968" ).
(若,,定义:已知,,,(1) 若,且,求;(2) 若函数的图象向左(或右)平移个单位,再向上(或(3) 下)平移个单位后得到函数的图象,求实数的值.
已知,且,,求的值.
.已知函数(1)若,求的单调区间;(2)若有最大值,求的值.