已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,y2),且满足k1+k2=0.(I)求抛物线C的焦点坐标;(II)若点M满足,求点M的轨迹方程.
已知数列各项均为正数,其前项和满足(1)证明:为等差数列(2)令,记的前项和为,求证:
在平面内,设到定点F(0,2)和轴距离之和为4的点P轨迹为曲线C,直线过点F,交曲线C于M,N两点。(1)说明曲线C的形状,并画出图形;(2)求线段MN长度的范围。
已知函数(1)求函数的单调区间与极值点;(2)若对,函数满足对都有成立,求实数的取值范围(其中是自然对数的底数)。
如图,四边形ABCD是正方形,平面ABCD,MA//PB,PB=AB=2MA=2。(1)P、C、D、M四点是否在同一平面内,为什么?(2)求证:面PBD 面PAC; (3)求直线BD和平面PMD所成角的正弦值。
某市图书馆有三部电梯,每位乘客选择哪部电梯到阅览室的概率都是。现有5位乘客准备乘电梯到阅览室。(1)求5位乘客选择乘同一部电梯到阅览室的概率;(2)若记5位乘客中乘第一部电梯到阅览室的人数为,求的分布列和数学期望