已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点、,点关于轴的对称点为.(Ⅰ)求椭圆W的方程;(Ⅱ)求证: ();(Ⅲ)求面积的最大值.
正三棱柱的侧面展开图是边长分别为2和4的矩形,则它的体积为 。
函数y=x+的值域是 。
已知{an}是首项为2,公比为的等比数列,Sn为它的前n项和 (1)用Sn表示Sn+1;(2)是否存在自然数c和k,使得成立
数列{an}的前n项和为Sn,已知{Sn}是各项均为正数的等比数列,试比较与的大小,并证明你的结论.
设,(1)利用函数单调性的意义,判断f(x)在(0,+∞)上的单调性;(2)记f(x)在0<x≤1上的最小值为g(a),求y=g(a)的解析式.