如图,在某城市中,M,N两地之间有整齐的方格形道路网,、、、是道路网中位于一条对角线上的4个交汇处,今在道路网M、N处的甲、乙两人分别要到M,N处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止。(1)求甲经过的概率;(2)求甲、乙两人相遇经点的概率;(3)求甲、乙两人相遇的概率;
已知向量a=(cosα,sinα),b=(cosβ,sinβ),|a-b|=. (1)求cos(α-β)的值; (2)若-<β<0<α<,且sinβ=-,求sinα的值.
在△ABC中,若sinA=,cosB=,求cosC.
求证:-2cos(α+β)=.
已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.
如图所示,在△ABC中,AB=AC,D是BC的中点,DE⊥AC,E是垂足,F是DE的中点,求证AF⊥BE.