如图,在某城市中,M,N两地之间有整齐的方格形道路网,、、、是道路网中位于一条对角线上的4个交汇处,今在道路网M、N处的甲、乙两人分别要到M,N处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止。(1)求甲经过的概率;(2)求甲、乙两人相遇经点的概率;(3)求甲、乙两人相遇的概率;
已知为定义在R上的奇函数,当时,为二次函数,且满足,在上的两个零点为和.(1)求函数在R上的解析式;(2)作出的图象,并根据图象讨论关于的方程根的个数.
已知函数。(1)求函数的定义域;(2)判断函数的奇偶性,并证明;(3)求使的的取值范围.
已知集合,.(1)当时,求集合,∁;(2)若,求实数的取值范围.
已知定义在上的函数f(x)同时满足下列三个条件:①f(3)=﹣1;②对任意x、y∈都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.(1)求f(9)、的值;(2)证明:函数f(x)在上为减函数;(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
已知函数f(x)=|x﹣1|+|x+1|(x∈R)(1)证明:函数f(x)是偶函数;(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.