某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.(1)请写出一次乘车的车费y元与行车的里程x千米的函数关系;(2)计算如果一次乘车费为32元,那么汽车行程为多少千米?(3)请问当行程为28千米时,请你设计一种乘车方案,使总费用最省.
已知函数f(x)=ax3+x2-a2x(a>0),存在实数x1、x2满足下列条件:①x1<x2;②f¢(x1)=f¢(x2)=0;③|x1|+|x2|=2. (I)证明:0<a£3; (II)求b的取值范围; (III)若函数h(x)=f¢(x)-6a(x-x1),证明:当x1<x<2时,|h(x)|£12a.
已知函数的导数为实数,. (Ⅰ)若在区间上的最小值、最大值分别为、1,求、的值; (Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程; (Ⅲ)设函数,试判断函数的极值点个数.
已知函数,为实数)有极值,且在处的切线与直线平行. (1)求实数a的取值范围; (2)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由; (3)设 求证:.
已知f(x)=x3+mx2-x+2(m∈R) 如果函数的单调减区间恰为(-,1),求函数f(x)的解析式; (2)若f(x)的导函数为f '(x),对任意x∈(0,+∞),不等式f '(x)≥2xlnx-1恒成立,求实数m的取值范围.
设函数,其中为常数. (1)当时,判断函数在定义域上的单调性; (2)若函数的有极值点,求的取值范围及的极值点; (3)求证对任意不小于3的正整数,不等式都成立.