某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.(1)请写出一次乘车的车费y元与行车的里程x千米的函数关系;(2)计算如果一次乘车费为32元,那么汽车行程为多少千米?(3)请问当行程为28千米时,请你设计一种乘车方案,使总费用最省.
(本小题满分12分)设椭圆的焦点分别为,直线交轴于于点A,且。(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形 DMEN的面积为,求DE的直线方程。
(本小题满分12分)如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2。(1)求证:AC∥平面BEF;(2)求四面体BDEF的体积。
(本小题满分12分)品厂为了检查甲、乙两条自动包装流水线的生产情况,在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品,表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图。某食(1)若检验员不小心将甲、乙两条流水线生产的重量值在(510,515]的产品放在了一起,然后又随机取出3件产品,求至少有一件是乙流水线生产的产品的概率;(2)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”。
(本小题满分12分)已知向量。(1)若,求的值;(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足,求函数的取值范围。
已知构成某系统的元件能正常工作的概率为p(0<p<1),且各个元件能否正常工作是相互独立的.今有2n(n大于1)个元件可按下图所示的两种联结方式分别构成两个系统甲、乙.(1)试分别求出系统甲、乙能正常工作的概率p1,p2;(2)比较p1与p2的大小,并从概率意义上评价两系统的优劣.