四棱锥 A - B C D E 中,底面 B C D E 为矩形,侧面 A B C ⊥ 底面 B C D E , B C = 2 , C D = 2 , A B = A C . (Ⅰ)证明: A D ⊥ C E ; (Ⅱ)设 C E 与平面 A B E 所成的角为 45 ° ,求二面角 C - A D - E 的大小.
已知函数f(x),x∈R,满足①f(1+x)=f(1-x),②在[1,+∞]上为增函数,③x1<0,x2>0且x1+x2<-2,试比较f(-x1)与f(-x2)的大小关系.
已知函数f(x)=2x2+bx可化为f(x)=2(x+m)2-4的形式.其中b>0.求f(x)为增函数的区间.
已知二次函数f(x)=a+bx(a,b是常数且a0)满足条件:f(2)=0.方程f(x)=x有等根 (1)求f(x)的解析式; (2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和 [2m,2n],如存在,求出m,n的值;如不存在,说明理由.
已知函数f(x)=2(m-1)-4mx+2m-1 (1)m为何值时,函数图像与x轴有一个公共点. (2)如果函数的一个零点为2,求m的值.
求方程的无理根(精确到0.01)