四棱锥 A - B C D E 中,底面 B C D E 为矩形,侧面 A B C ⊥ 底面 B C D E , B C = 2 , C D = 2 , A B = A C . (Ⅰ)证明: A D ⊥ C E ; (Ⅱ)设 C E 与平面 A B E 所成的角为 45 ° ,求二面角 C - A D - E 的大小.
设函数(1)若证明:。(2)若不等式对于及恒成立,求实数的取值范围。
已知正数满足 证明
若(n为正整数),求证:不等式 对一切正整数n恒成立
设,求证:
在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数的图象恰好通过个整点,则称函数为阶整点函数.有下列函数:①; ② ③ ④,其中是一阶整点函数的是