1)设≤1,求一个正常数a,使得x≤;(2)设≤1,,求证:≤
已知函数 (1)求函数的单调区间; (2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。
已知函数 (1)若在上是增函数,求实数的取值范围; (2)若是的极值点,求在上的最小值和最大值.
如图,三棱柱的所有棱长都为2,为中点,平面 (1)求证:平面; (2)求二面角的余弦值; (3)求点到平面的距离.
求由抛物线与它在点和点的切线所围成的区域的面积。
在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?