已知函数 f ( x ) = x 3 - 3 a x 2 - 9 a 2 x + a 3 .
(1)设 a = 1 ,求函数 f ( x ) 的极值; (2)若 a > 1 4 ,且当 x ∈ 1 , 4 a 时, f ` ( x ) ≤ 12 a 恒成立,试确定 a 的取值范围.
(本小题满分13分) (本小题满分12分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y越大表示学生注意力越集中). 当时,图象是抛物线的一部分,当和时,图象是线段. (1)当时,求注意力指标数y与时间x的函数关系式; (2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.
(本小题满分12分) 如图是某三棱柱被削去一个底面后的直观图与侧视图、俯视图.已知,侧视图是边长为2的等边三角形;俯视图是直角梯形,有关数据如图所示. (Ⅰ)求该几何体的体积; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 某篮球职业联赛的总决赛在甲队与乙队间角逐,采用五局三胜制,即若一队先胜三场,则此队获胜,比赛结束,因两队实力相当,每场比赛获胜的可能性相等,据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入都比上一场增加10万元,问: ⑴组织者在此次总决赛中获得门票收入不少于180万元的概率是多少? ⑵用表示组织者在此次总决赛中的门票收入,求的数学期望?
(本小题满分12分) 已知函数(其中为正常数,)的最小正周期为. (1)求的值; (2)在△中,若,且,求.
在各项均为正数的数列中,前项和满足。 (1)证明是等差数列,并求这个数列的通项公式及前项和的公式; (2)在平面直角坐标系面上,设点满足,且点在直线上,中最高点为,若称直线与轴、直线所围成的图形的面积为直线在区间上的面积,试求直线在区间上的面积; (3)求出圆心在直线上的圆,使得点列中任何一个点都在该圆内部