(本小题满分12分)某商店经销一种奥运纪念品,每件产品成本为30元,且每卖出一件产品,需向税务部门上交元(为常数,)的税收,设每件产品的日售价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比,已知每件产品的日售价为40元,日销售量为10件。w.w.w求商店的日利润元与每件产品的日售价元的函数关系式;当每件产品的日售价为多少元时该商店的日利润最大,说明理由。
如图所示,在棱长为2的正方体中,、分别为、 的中点. (1)求证://平面; (2)求三棱锥的体积.
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人. (1)求的值; (2)把在前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖, 求和至少有一人上台抽奖的概率; (3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.
(本小题10分)已知函数. (1)若,求函数的值; (2)求函数的值域.
(本小题满分12分)在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:相切. (Ⅰ)求圆O的方程; (Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.
(本小题满分12分)已知数列{an}满足:Sn=1﹣an(n∈N*),其中Sn为数列{an}的前n项和. (Ⅰ)试求{an}的通项公式; (Ⅱ)若数列{bn}满足,试求{bn}的前n项和公式Tn.