已知函数 f ( x ) = x 3 + b x 2 + c x 的导函数的图象关于直线 x = 2 对称. (Ⅰ)求 b 的值; (Ⅱ)若 f ( x ) 在 x = t 处取得最小值,记此极小值为 g ( t ) ,求 g ( t ) 的定义域和值域.
已知椭圆,的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切。、求椭圆的方程;、过点的直线(斜率存在时)与椭圆交于、两点,设为椭圆与轴负半轴的交点,且,求实数的取值范围。
设、分别是椭圆,的左、右焦点,是该椭圆上一个动点,且,。、求椭圆的方程;、求出以点为中点的弦所在的直线方程。
已知圆的圆心在轴的正半轴上,且圆与圆相外切,又和直线相切,求圆的方程。
已知实数满足,、若,求的最大值;、若,求的最小值。
设方程。、当在什么范围内变化时,该方程表示一个圆;、当在的范围内变化时,求圆心的轨迹方程。