(本小题满分12分) 设椭圆的左焦点为F,O为坐标原点,已知椭圆中心关于直线对称点恰好落在椭圆的左准线上。 (1)求过O、F并且与椭圆右准线l相切的圆的方程;
(2)设过点F且不与坐标轴垂直的直线交椭圆于M、N两点,线段MN的中垂线与y轴交于点A,求点A纵坐标的取值范围。
设 a ≥ 0 , f x = x - 1 - ln 2 x + 2 a ln x x > 0 .
(Ⅰ)令 F x = x f ` x ,讨论 F x 在 0 , + ∞ 内的单调性并求极值; (Ⅱ)求证:当 x > 1 时,恒有 x > ln 2 x - 2 a ln x + 1 .
如图,在六面体 A B C D - A 1 B 1 C 1 D 1 中,四边形 A B C D 是边长为2的正方形,四边形 A 1 B 1 C 1 D 1 是边长为1的正方形, D D 1 ⊥ 平面 A 1 B 1 C 1 D 1 , D D 1 ⊥ 平面 A B C D , D D 1 = 2 .
(Ⅰ)求证: A 1 C 1 与 A C 共面, B 1 D 1 与 B D 共面; (Ⅱ)求证: 平面 A 1 A C C 1 ⊥ 平面 B 1 B D D 1 ; (Ⅲ)求二面角 A - B B 1 - C 的大小(用反三角函数值表示).
已知0<a<的最小正周期, 向量 a = ( tan ( α + β / 4 ) , - 1 ) , 向量 b = ( cos α , 2 ) , 且向量 a × 向量 b = m , 求 2 cos 2 α + sin 2 α + β cos α - sin α .
已知函数 f ( x ) = x 2 t - 2 t ( x 2 + x ) + x 2 + 2 t 2 + 1 , g ( x ) = 1 2 f ( x ) . (I)证明:当 t < 2 2 时, g ( x ) 在 R 上是增函数; (II)对于给定的闭区间 [ a , b ] ,试说明存在实数 k ,当 t > k 时, g ( x ) 在闭区间 [ a , b ] 上是减函数; (III)证明: f ( x ) ≥ 3 2 .
已知数列 a n , b n 与函数 f ( x ) , g ( x ) , x ∈ R 满足条件: a n = b n , f ( b n ) = g ( b n + 1 ) .( n ∈ N * )
(I)若 f ( x ) ≥ t x + 1 , t ≠ 0 , t ≠ 2 , g ( x ) = 2 x , f ( b ) ≠ g ( b ) , l i m n → ∞ a n 存在,求 x 的取值范围; (II)若函数 y = f ( x ) 为 R 上的增函数, g ( x ) = f - 1 ( x ) , b = 1 , f ( 1 ) < 1 ,证明对任意 n ∈ N * , l i m n → ∞ a n (用 t 表示).