围建一个面积为 360 m 2 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为 2 m 的进出口,如图所示,已知旧墙的维修费用为45元 / m ,新墙的造价为180元 / m ,设利用的旧墙的长度为 x (单位:元).
(Ⅰ)将 y 表示为 x 的函数; (Ⅱ)试确定 x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
设二次函数,关于的不等式的解集有且只有一个元素.(1)设数列的前项和求数列的通项公式;(2)记,求数列中是否存在不同的三项能组成等比数列?请说明理由.
已知函数的部分图象如图所示,是图象的最高点,为图象与轴的交点,为坐标原点,若(1)求函数的解析式,(2)将函数的图象向右平移2个单位后得到函数的图象,当时,求函数的值域.
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.(1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;(2)证明:若数列是“线性数列”,则数列也是“线性数列”;(3)若数列满足,,为常数.求数列前项的和.
已知函数,.(1)证明:函数在区间上为增函数,并指出函数在区间上的单调性. (2)若函数的图像与直线有两个不同的交点,,其中,求关于的函数关系式.(3)求的取值范围.
已知数列 为等差数列,公差 ,且 (1)求证:当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为 …,求证:数列为等差数列.