如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为ym。(1)设∠CA1O = (rad),将y表示成θ的函数关系式;(2)请你设计,当角θ正弦值的大小是多少时,细绳总长y最小,并指明此时 BC应为多长。
已知点A(1,0)、B(0,2)、C(-1,-2),求以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
设两个非零向量e1和e2不共线. (1)如果=e1-e2,=3e1+2e2,=-8e1-2e2, 求证:A、C、D三点共线; (2)如果=e1+e2,=2e1-3e2,=2e1-ke2,且A、C、D三点共线,求k的值.
已知点G为△ABC的重心,过G作直线与AB、AC两边分别交于M、N两点,且=x,=y,求+的值.
已知:任意四边形ABCD中,E、F分别是AD、BC的中点,求证:=(+).
如图所示,在△ABC中,D、F分别是BC、AC的中点,=,=a,=b. (1)用a、b表示向量、、、、; (2)求证:B、E、F三点共线.