如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为ym。(1)设∠CA1O = (rad),将y表示成θ的函数关系式;(2)请你设计,当角θ正弦值的大小是多少时,细绳总长y最小,并指明此时 BC应为多长。
已知全集,集合,, (1)求; ; (2)若集合是集合A的子集,求实数k的取值范围.
已知函数,其中.(1)求的单调区间;(2)当时,斜率为的直线与函数的图象交于两点,其中,证明:.(3)是否存在,使得对任意恒成立?若存在,请求出的最大值;若不存在,请说明理由.在正数,使得成立?请说明理由.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点且不垂直于x轴直线与椭圆C相交于A、B两点.(1)求椭圆C的方程;(2)求的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
已知函数的图象在点处的切线方程为.(1)用表示;(2)若函数在上的最大值为2,求实数a的取值范围.
已知数列的前项和为,若,且.(1)求证:为等比数列;(2)求数列的前项和.