如图,在四棱锥中,底面是边长为2的菱形,且,为正三角形,为的中点,为棱的中点(1)求证:平面(2)求二面角的大小
椭圆:的一个焦点,(c为椭圆的半焦距).(1)求椭圆的方程;(2)若为直线上一点,为椭圆的左顶点,连结交椭圆于点,求的取值范围;
设函数在,处取得极值,且.(Ⅰ)若,求的值,并求的单调区间;(Ⅱ)若,求的取值范围.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.
已知函数(m为常数,且m>0)有极大值9.(Ⅰ)求m的值;(Ⅱ)若斜率为-5的直线是曲线的切线,求此直线方程.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程