如图,已知椭圆C:,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;(2)若,求实数k的取值范围.
设数列的前n项和为,为等比数列,且 (1)求数列和的通项公式; (2)设,求数列的前n项和Tn
已知定义在区间(-1,1)上的函数为奇函数。且 (1)求实数的值。 (2)求证:函数(-1,1)上是增函数。 (3)解关于.
已知函数. (1)若时函数有极小值,求的值;(2)求函数的单调增区间.
已知函数. (1)求的值; (2)设,求的值.
已知函数,数列满足,且. (1)试探究数列是否是等比数列? (2)试证明; (3)设,试探究数列是否存在最大项和最小项?若存在求出 最大项和最小项,若不存在,说明理由.