如图,已知椭圆C:,经过椭圆C的右焦点F且斜率为k(k≠0)的直线l交椭圆G于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(1)是否存在k,使对任意m>0,总有成立?若存在,求出所有k的值;(2)若,求实数k的取值范围.
已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0. (1)求证:f(x)是偶函数; (2)求证:f(x)在(0,+∞)上是增函数.
已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求实数a的取值范围.
设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x. (1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.
已知函数g(x)=+1,h(x)=,x∈(-3,a],其中a为常数且a>0,令函数f(x)=g(x)·h(x). (1)求函数f(x)的表达式,并求其定义域; (2)当a=时,求函数f(x)的值域.
已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x)的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.