已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点。(Ⅰ)若的坐标分别是,求的最大值;(Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,,求线段的中点的轨迹方程。
定义在定义域内的函数,若对任意的都有,则称函数为“妈祖函数”,否则称“非妈祖函数”.试问函数,()是否为“妈祖函数”?如果是,请给出证明;如果不是,请说明理由.
设为实数,函数. (1)求的单调区间与极值; (2)求证:当且时,.
已知函数,函数 ⑴当时,求函数的表达式; ⑵若,函数在上的最小值是2 ,求的值.
已知 (1)求的单调增区间 (2)若在内单调递增,求的取值范围.
已知,函数. (1)设,将函数表示为关于的函数,求的解析式和定义域; (2)对任意,不等式都成立,求实数的取值范围.