已知函数(1)求函数的单调区间;(2)曲线在点和处的切线都与轴垂直,若曲线在区间上与轴相交,求实数的取值范围;
的周长为,且.(1)求边的长;(2)若的面积为,求角的度数.
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。(1)求椭圆C的方程;(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
(本小题满分13分) 设数列满足;(1)当时,求并由此猜测的一个通项公式;(2)当时,证明对所有的,(i)(ii)。
从边长为2a的正方形铁皮的四个角各截去一个边长为x的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度x与底面正方形的边长的比不超过常数t.问:(1)求长方体的容积V关于x的函数表达式;(2)x取何值时,长方体的容积V有最大值?
(本小题满分12分)已知关于的不等式,其中.(1)当变化时,试求不等式的解集;(2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.