如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F 为CE上的点,且BF⊥平面ACE. (Ⅰ)求证:AE⊥平面BCE; (Ⅱ)求二面角B—AC—E的余弦值; (Ⅲ)求点D到平面ACE的距离.
某次春游活动中,名老师和6名同学站成前后两排合影,名老师站在前排,6名同学站在后排. (1)若甲,乙两名同学要站在后排的两端,共有多少种不同的排法? (2)若甲,乙两名同学不能相邻,共有多少种不同的排法? (3)若甲乙两名同学之间恰有两名同学,共有多少种不同的排法? (4)在所有老师和学生都排好后,拍照的师傅觉得队形不合适,遂决定从后排6人中抽2人调整到前排.若其他人的相对顺序不变,共有多少种不同的调整方法?
如图,矩形的在变换的作用下分别变成,形成了平行四边形 (1)求变换对应的矩阵; (2)变换对应的矩阵将直线变成了直线:,求直线的(1)方程.
已知定义在区间上的函数为奇函数,且 (1)求函数的解析式; (2)用定义法证明:函数在区间上是增函数; (3)解关于的不等式.
已知a>0,且a.命题P:函数在内单调递减;命题Q:。如果“P或Q为真”且“P且Q为假”,求a的取值范围。
已知函数. (1)求的最小正周期; (2)求在区间上的最大值和最小值. (3)若g(x)=f(),求函数g(x)的单调增区间;