已知 { a n } 是公差为 p 的等差数列, { b n } 是公比为 q 的等比数列。 (1)若 a n = 3 n + 1 ,是否存在 m , n ∈ N * ,有 a m + a m + 1 = a k ?请说明理由; (2)若 b n = a q n ( a , q 为常数,且 a q ≠ 0 )对任意 m 存在 k ,有 b m · b m + 1 = b k ,试求 a , q 满足的充要条件; (3)若 a n = 2 n + 1 , b n = 3 n 试确定所有的 p ,使数列 { b n } 中存在某个连续 p 项的和式数列中 { a n } 的一项,请证明。
设函数f(x)=cos(2x﹣)+2cos2x, (Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合; (Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=,b+c=2,a=1,求△ABC的面积的最大值.
【选修4-5:不等式选讲】 (1)设函数的定义域为,试求的取值范围; (2)已知实数满足,求的最小值.
【选修4-4:坐标系与参数方程】 已知曲线的参数方程为:为参数),直线的参数方程为:为参数),点,直线与曲线交于两点. (1)写出曲线和直线在直角坐标系下的标准方程; (2)求的值.
【选修4-1:几何证明选讲】 如图,在中,于,于,交于点,若,. (1)求证:; (2)求线段的长度.
已知函数. (1)若恒成立,试确定实数的取值范围; (2)证明:.