已知 { a n } 是公差为 p 的等差数列, { b n } 是公比为 q 的等比数列。 (1)若 a n = 3 n + 1 ,是否存在 m , n ∈ N * ,有 a m + a m + 1 = a k ?请说明理由; (2)若 b n = a q n ( a , q 为常数,且 a q ≠ 0 )对任意 m 存在 k ,有 b m · b m + 1 = b k ,试求 a , q 满足的充要条件; (3)若 a n = 2 n + 1 , b n = 3 n 试确定所有的 p ,使数列 { b n } 中存在某个连续 p 项的和式数列中 { a n } 的一项,请证明。
(本小题满分12分)已知直线:交抛物线于两点,为坐标原点.(Ⅰ)求的面积;(Ⅱ)设抛物线在点处的切线交于点,求点的坐标.
(本小题满分12分)已知函数在时有极值.(Ⅰ)求的解析式;(Ⅱ)求函数在上的最大值、最小值.
(本小题满分12分)若数列的通项公式,记.(Ⅰ)计算的值;(Ⅱ)由(Ⅰ)猜想,并证明.
(本小题满分12分)已知命题p:,恒成立.命题q:使得.若“且”为真,求实数的取值范围.
(本小题满分14分)如图所示,已知圆,为定点,为圆上的动点,线段的垂直平分线交于点,点的轨迹为曲线E. (Ⅰ)求曲线的方程;(Ⅱ)过点作直线交曲线于两点,设线段的中垂线交轴于点,求实数m的取值范围.