如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1.(Ⅰ) 求椭圆的方程;(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.
(本小题满分16分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.⑴求椭圆的标准方程;⑵若时,,求实数;⑶试问的值是否与的大小无关,并证明你的结论.
(本小题满分14分)某公司2009年9月投资14400万元购得上海世界博览会某种纪念品的专利权及生产设备,生产周期为一年.已知生产每件纪念品还需要材料等其它费用20元,为保证有一定的利润,公司决定纪念品的销售单价不低于150元,进一步的市场调研还发现:该纪念品的销售单价定在150元到250元之间较为合理(含150元及250元).并且当销售单价定为150元时,预测年销售量为150万件;当销售单价超过150元但不超过200元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1万件;当销售单价超过200元但不超过250元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1.2万件.根据市场调研结果,设该纪念品的销售单价为(元),年销售量为(万件),平均每件纪念品的利润为(元).⑴求年销售量为关于销售单价的函数关系式;⑵该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价为多少时,平均每件纪念品的利润最大?
(本小题满分14分)如图,直四棱柱的底面是菱形,,点、分别是上、下底面菱形的对角线的交点.⑴求证:∥平面;⑵求点到平面的距离.
(本小题满分14分)在△中,角、、的对边分别为、、,且.⑴求的值;⑵若,求及的值.
(本小题16分) 已知函数,。 (1)若,求使的的值; (2)若对于任意的实数恒成立,求的取值范围; (3)求函数在上的最小值.