已知集合,,且,设函数.(1)求函数的单调减区间;(2)当时,求的最大值和最小值.
设函数。 (Ⅰ)求函数的最小正周期,并判断奇偶性; (Ⅱ)设A,B,C为的三个内角,若,且C为锐角,求。
已知函数设计一个算法步骤求的值.
规定A=x(x-1)…(x-m+1),其中x∈R,m为正整数,且A=1,这是排列数A(n,m是正整数,且m≤n)的一种推广. (1)求A的值; (2)排列数的两个性质:①A=nA,②A+mA=A(其中m,n是正整数).是否都能推广到A(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由; (3)确定函数A的单调区间.
平面上有两个质点A(0,0), B(2,2),在某一时刻开始每隔1秒向上下左右任一方向移动一个单位。已知质点A向左,右移动的概率都是,向上,下移动的概率分别是和P, 质点B向四个方向移动的概率均为q: (1)求P和q的值; (2)试判断至少需要几秒,A,B能同时到达D(1,2),并求出在最短时间同时到达的概率?
个人坐在一排个座位上,问(1)空位不相邻的坐法有多少种?(2) 个空位只有个相邻的坐法有多少种?(3) 个空位至多有个相邻的坐法有多少种?