如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B1的中点. (1)证明:面⊥平面A1B1BA;(2)证明:;(3)求棱柱ABC—A1B1C1被平面分成两部分的体积比.
对有个元素的总体进行抽样,先将总体分成两个子总体和(是给定的正整数,且),再从每个子总体中各随机抽取个元素组成样本.用表示元素和同时出现在样本中的概率. (1)求的表达式(用表示); (2)求所有的和.
如图所示的几何体中,面为正方形,面为等腰梯形,,,,且平面平面. (1)求与平面所成角的正弦值; (2)线段上是否存在点,使平面平面? 证明你的结论.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的点为极点,轴正方向为极轴,且长度单位相同,建立极坐标系,得直线的极坐标方程为.求直线与曲线交点的极坐标.
已知矩阵,点,.求线段在矩阵对应的变换作用下得到线段的长度.
已知函数,,其中m∈R. (1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)的单调性,并证明你的结论; (2)设函数若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) =" g" (x2) 成立,试确定实数m的取值范围.