已知向量=(sinA,cosA),=(,-1),·=1,且为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
用分析法证明:当x>0时,sinx<x.
已知函数f(x)=x2+ax+b,当p,q满足p+q=1时,证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x,y都成立的充要条件是0≤p≤1.
若a,b,m,n都为正实数,且m+n=1.求证:≥m+n.
已知a>0,b>0,求证:+≥+.
已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=(1)若f(-2)=0,求F(x)的表达式.(2)在(1)的条件下,解不等式1≤|F(x)|≤2.(3)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?