扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).⑴求关于的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值
在数列中,,并且对于任意n∈N*,都有.⑴证明数列为等差数列,并求的通项公式;⑵设数列的前n项和为,求使得的最小正整数.
已知.⑴若∥,求;⑵若的夹角为,求;⑶若与垂直,求与的夹角.
九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.按照某种规则解开九连环,至少需要移动圆环a9次.我们不妨考虑n个圆环的情况,用an表示解下n个圆环所需的最少移动次数,用bn表示前(n﹣1)个圆环都已经解下后,再解第n个圆环所需的次数,按照某种规则可得:a1=1,a2=2,an=an﹣2+1+bn﹣1,b1=1,bn=2bn﹣1+1.(1)求bn的表达式;(2)求a9的值,并求出an的表达式;(3)求证:.
已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.(1)求a的值.(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.
已知圆C的方程为:x2+y2=4(1)求过点P(2,1)且与圆C相切的直线l的方程;(2)直线l过点D(1,2),且与圆C交于A、B两点,若|AB|=2,求直线l的方程;(3)圆C上有一动点M(x0,y0),=(0,y0),若向量=+,求动点Q的轨迹方程.