已知动圆与轴相切,且过点.⑴求动圆圆心的轨迹方程;⑵设、为曲线上两点,,,求点横坐标的取值范围.
(1)已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率; (2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.
某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示: (1)分别求出a,b,x,y的值; (2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人? (3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组 至少有1人获得幸运奖的概率.
已知集合A=,B={x|x+m2≥1}.命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.
已知函数. (1)讨论函数的单调性; (2)设,证明:对任意,,.
过点的椭圆()的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点. (1)当直线过椭圆右焦点时,求线段的长; (2)当点异于点时,求证:为定值.