(本小题满分16分)已知数列在函数的图象上,数列满足 (1)求数列的通项公式;(2)证明列数是等比数列,并求数列的通项公式;(3)设数列满足对任意的成立,的值。
设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=,求: (1)直线AD与平面BCD所成角的大小;(2)异面直线AD与BC所成的角;(3)二面角A—BD—C的大小.
已知四边形ABCD为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2(1)求PC的长;(2)求异面直线PC与BD所成角的余弦值的大小;(3)求证:二面角B—PC—D为直二面角.
如图,为60°的二面角,等腰直角三角形MPN的直角顶点P在l上,M∈α,N∈β,且MP与β所成的角等于NP与α所成的角.(1)求证: MN分别与α、β所成角相等;(2)求MN与β所成角.
已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直. (1)求证: AB1⊥C1D1;(2)求证: AB1⊥面A1CD;(3)若AB1=3,求直线AC与平面A1CD所成的角.
在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC. (1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你叙述判断理由.