如图,过点B(0,-b)作椭圆=1(a>b>0)的弦,求这些弦长的最大值.
如图,在四棱锥中,,平面,平面,,,. (Ⅰ)求棱锥的体积; (Ⅱ)求证:平面平面; (Ⅲ)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图. (Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.
已知是等差数列,满足,数列满足,且为等比数列. (1)求数列的通项公式; (2)求数列的前n项和.
选修4-5:不等式选讲 已知函数. (Ⅰ)若不等式的解集为空集,求实数的取值范围; (Ⅱ)若且,求证:.
选修4-4:坐标系与参数方程 在直角坐标系中,设倾斜角为的直线:,(为参数)与曲线,(为参数)相交于不同两点、. (Ⅰ)若,求线段中点的坐标; (Ⅱ)若,其中,求直线的斜率.