如图,过点B(0,-b)作椭圆=1(a>b>0)的弦,求这些弦长的最大值.
已知函数f(x)=-(a+2)x+lnx.(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
在△ABC中,A、B、C为三个内角,a、b、c为相应的三条边,<C<,且=. (1)判断△ABC的形状; (2)若|+|=2,求·的取值范围.
已知各项均为正数的数列{}满足--2=0,n∈N﹡,且是a2,a4的等差中项.(1)求数列{}的通项公式;(2)若=,=b1+b2+…+,求的值.
已知α,β为锐角,且sinα=,tan(α-β)=-.求cosβ的值.
设数列的前项和满足,其中.⑴若,求及;⑵若,求证:,并给出等号成立的充要条件.