已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1.(1)若直线AP的斜率为k,且|k|∈[,],求实数m的取值范围;(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.
分别求正态总体N(μ,σ2)在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率。
已知圆,及点,(1)若在圆上,求线段的长及直线的斜率;(2)若为圆上任一点,求的最大值和最小值;(3)若实数满足,求的最大值和最小值.
直线经过点,它的倾斜角是直线倾斜角的2倍,求直线的方程.
两个厂距一条河分别为和,两厂之间距离,把小河看作一条直线,今在小河边上建一座提水站,供两厂用水,要使提水站到两厂铺设的水管长度最短,问提水站应建在什么地方?
圆内有一点为过点且倾斜角为的弦.(1)当时,求的长; (2)当弦被点平分时,写出直线的方程.