已知数列{a}中,a=2,前n项和为S,且S=.(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值
已知在△ABC中,角A、B、C的对边分别为a,b,c。且C=2A,a+c=10,cosA=,求b的值
若数列满足,,。⑴证明数列是等差数列⑵求的通项公式
若非零向量a, b满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),求a,b的夹角。
设a=(-1,1),b=(4,3),c=(5,-2)⑴求a与 b夹角的余弦值⑵求c在a方向上的投影⑶求λ1与λ2,使c=λ1a+λ2b
已知函数(1)若的极值点,求实数a的值;(2)若上为增函数,求实数a的取值范围;(3)当有实根,求实数b的最大值。